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1. Introduction

QCD [1] is considered to be a well-established theory for the strong interaction. In the high

energy regime, we can use a perturbative approach to understand the theory. However, at

low energy, because of the large coupling constant, perturbation theory is not applicable.

In the low energy regime we can appeal to other methods of analysis, for instance chiral

perturbation theory and lattice QCD.

Conjectured by Maldacena [2] in 1997, the AdS/CFT correspondence is a new approach

to this difficult problem. This conjecture states that a string theory on AdS5 × S5 is

equivalent to a conformal theory on the boundary of AdS5. QCD is classically but not

quantum mechanically conformal. However, the AdS/CFT correspondence has provided

important insights into QCD, such as confinement at large distances [3] and chiral symmetry

breaking [4 – 11]. Currently these topics are very active areas of research.

The quantitative correspondence was specified in independent work by Gubser, Kle-

banov and Polyakov [12] and by Witten [13]

〈

ei
R

d4xO φ
〉

CFT
= ZSUGRA (φ(z)|z→0 = φ) (1.1)

which states that the generating functional for correlation functions with a source φ for some

field theory operator is equivalent to the partition function of a supergravity theory where

the boundary value of some supergravity field is the source for the field theory operator.

The choice of supergravity field and field theory operator is a matter of matching the

representations of the global symmetries of the two pair.

In recent years a new phenomenological approach, based on the rules of the AdS/CFT

correspondence has been developed [6, 8]. This approach introduces a five-dimensional

classical theory in an AdS5 background where appropriate fields are included in the ac-

tion to act as sources on the boundary for operators of a QCD-like theory. This original

formulation included only light quark operators and gave a phenomenological model of

chiral symmetry breaking. In the five-dimensional theory the symmetry is a gauge sym-

metry and a simple Higgs mechanism is set up to model chiral symmetry breaking in the

four-dimensional theory.
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The results from these relatively simple and phenomenological models are remarkable

and the simplest realization gives predictions for several meson masses and decay constants

with an average of around 15% error.

Since the introduction of this phenomenological action, many advances have been made

to model QCD more accurately. These include the introduction of linear confinement via an

appropriately chosen scalar field in the five-dimensional theory [14], the inclusion of gluon

condensate contributions to QCD quantities [15] and studies of heavy quark potentials [16 –

18].

In [19], we considered the impact of a classical scalar field back-reacting on the geome-

try. In this case the impact on the geometry was most strongly affected by the condensate

of light quarks.

The strange quark was introduced [11] in order to study the kaon sector and found

that reasonably accurate predictions could be found for these mesons, too.

In this paper we ask what the impact of the strange quark on the geometry will be.

We may expect that as the chiral symmetry is broken more explicitly for the strange quark

the effect of the strange quark condensate on the dynamics of the theory may be less

pronounced.

2. Back reaction on the geometry

In this section, we consider the impact of one scalar field on the metric. The total field

content is the gravitational field plus the scalar field, which will be responsible for chiral

symmetry breaking. The Lagrangian is given by

S =

∫

d5x
√

g(−R + Tr(∂φ)2 + V (φ)), (2.1)

R is the five-dimensional Ricci scalar, and the metric is

ds2 = e−2A(y)dxµdxµ − dy2. (2.2)

The Ricci scalar R is given by

R(y) = 20A′2(y) − 8A′′(y) . (2.3)

From the action, one can find the equations of motion for the scalar field and for the metric

tensor,
1

2
gPQ[−R + Tr(∂Mφ∂Mφ + V (φ))] + RPQ − Tr∂P φ∂Qφ = 0 , (2.4)

and

Tr
∂V (φ)

∂φ
=

2√
g
Tr∂P (

√
ggPQ∂Qφ) , (2.5)

which gives

6A′′(y) − 12A′2(y) + Tr(V (φ) − φ′2(y)) = 0 (2.6)

12A′2(y) − V (φ) = Trφ′2(y) (2.7)

φ′′(y) − 4A′(y)φ′(y) +
1

2

∂V (φ)

∂φ
= 0. (2.8)
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Eq. (2.6) and eq. (2.7) give

3A′′(y) = Trφ′2(y) (2.9)

and

3A′′(y) − 12A′2(y) + V (φ) = 0 . (2.10)

From eq. (2.9), the function of A(y) can be obtained, given a solution for φ. Then from

eq. (2.10), one can find the potential V (φ). So, at no point do we need to rely on numerical

techniques.

We now give an example and show how to find the warp factor in the metric function in

the presence of a scalar field. It has been known that scalar field is the source of operator

q̄q and the potential V (φ) includes the mass term 3φ2. Considering the UV behavior

y → −∞, A(y) = y, and keeping the lowest nontrivial mass term in the potential, we get

from eq. (2.8) the following solution

φ(y) =
mq

2
ey +

σ

2
e3y , (2.11)

here for later use, we suppose mq and σ are 3 by 3 matrices

mq = diag(m,m,ms), σ = diag(c, c, cs).

Taking the scalar field in eq. (2.11) as the given solution, we shall be able to obtain the

warp factor from eq. (2.9) and the Higgs potential from eq. (2.10).

It is not difficulty to check that

Trφ′2(y) = 2

(

3

2
ce3y +

1

2
mey

)2

+

(

3

2
cse

3y +
1

2
mse

y

)2

. (2.12)

From eq. (2.9) and the UV boundary condition A′(y)|y→−∞ = 1, the warp factor A(y) is

found to be

A(y) = y +
1

8

(

1

3
c2e6y +

1

6
c2
se

6y +
1

2
c m e4y +

1

4
cs ms e4y

)

. (2.13)

It is seen that the UV behavior of the metric is not greatly modified by the back reaction

of this scalar field. The potential V (φ) in eq. (2.1) deserves a comment. From eq. (2.10),

with A(y) in eq. (2.13), one can calculate V (φ). In general, V (φ) will get corrections

due to interactions with the metric field. This example demonstrates that the system is

self-consistent.

3. A phenomenological model

In such a model of QCD, the three relevant operators are q̄α
Lq

β
R, q̄L,RγµtaqL,R.

Now, let’s consider the following action

S =

∫

d5x
√

g

{

−R + Tr

(

|Dφ|2 + V (φ) − 1

4g2
5

(F 2
L + F 2

R)

)}

(3.1)
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where DMφ = ∂Mφ − iALMφ + iφARM , AL,R = Aa
L,Rta and FMN = ∂MAN − ∂NAM −

i[AM , AN ], where Tr[ta, tb] = 1
2δab. We define the vector and axial-vector gauge bosons to

be VM = 1
2(ALM + ARM ) and AM = 1

2 (ALM − ARM ) respectively. Following ref. [6], we

choose the gauge Vz = Az = 0 . From this action, the expectation value of the scalar field

is found to be that chosen in eq. 2.11, mq is corresponding to the quark mass matrix, σ is

related to the quark condensate: σαβ=〈 q̄αqβ〉, which can be shown by matching the four-

dimension effective Lagrangian to chiral Lagrangian [8]. Substituting φ =< φ > ei2taπa(x,y)

back into the action, the mass matrix of VM and AM bosons are found to have the following

forms [11].

M2
V =







03×3 0 0

0 1
4 (m̂ − m̂s)

2 z214×4 0

0 0 0






, (3.2)

and

M2
A =







m̂2z213×3 0 0

0 1
4 (m̂ + m̂s)

2 z214×4 0

0 0 1
3

(

(m̂)2 + 2 (m̂s)
2
)

z2






, (3.3)

where m̂ = m+ cz2 and m̂s = ms + csz
2. For convenience we have made change of variable

z = ey. Denote Ṽ a
M⊥(q, z) and Ãa

M⊥(q, z) as the normalizable modes of four-dimensional

Fourier transformed transverse field V a
M⊥(x, z) and Aa

M⊥(x, z) respectively, they satisfy the

following equations of motion ( no summation)

[

∂2
z + ∂z

(

ln Ã(z)
)

∂z +
(

q2 − (g2
5Ã2(z)M2

V )aa

)]

Ṽ a
M⊥(q, z) = 0, (3.4)

and
[

∂2
z + ∂z

(

ln Ã(z)
)

∂z +
(

q2 − (g2
5Ã2(z)M2

A)aa

)]

Ãa
M⊥(q, z) = 0, (3.5)

where

Ã(z) =
1

z
exp

(

−1

8

(

1

3
c2z6 +

1

6
c2
sz

6 +
1

2
cz4m +

1

4
csz

4ms

))

,

with boundary conditions

∂zṼ
a
M⊥(q, z)|z=zIR

= 0, Ṽ a
M⊥(q, z)|z=ǫ = 0,

similarly for Ãa
M⊥. The mass of the vector and axial vector mesons can be obtained by

solving the eigenvalue equations eq. (3.4) and eq. (3.5) with q2 = m2
V and q2 = m2

A,

respectively. The decay constants of these mesons can be obtained from an arbitrary

component of vector field via [6]

FV a =
1

g5

|∂2
z Ṽ a

⊥(MV a , z)|
NV a

|z=0, (3.6)

where NV a is the normalization factor defined by an arbitrary component of vector field

NV a =

∫ zIR

0
dz Ã(z) |Ṽ a

⊥(MV a , z)|2,

– 4 –
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z−1
IR m c

1

3 ms c
1

3
s

320.55 2.28 328.5 138.5 176

Table 1: Fit results for the free parameters in units of MeV.

similarly for FAa . The mass of the pseudoscalar mesons can be obtained by solving the

following equations (no summation)

(

∂2
z + ∂z

(

ln Ã(z)
)

∂z

)

φa + g2
5Ã

2(z)
(

M2
A

)

aa
(πa − φa) = 0, (3.7)

∂z

(

Ã3(z)
(

M2
V +M2

A

)

aa
∂zπ

a
)

= q2Ã3(z)

(

(

M2
V +M2

A

)

aa

(

1

2
φa−πa

)

+
(

M2
A−M2

V

)

aa

1

2
φa

)

,

with boundary conditions

∂zφ
a(z = zIR) = ∂zπ

a(z = zIR) = φa(z = 0) = πa(z = 0) = 0

where φa is defined as the longitudinal part of Aa
µ, i.e., ∂µφa = Aa

µ|| .

The decay constants of the pseudoscalar is calculated from an arbitrary component of

axial vector field via [6]

fP a = − 1

g2
5

∂zÃ
a
⊥(0, z)

z
|z→0, (3.8)

with Ãa
⊥(0, z) are given by the solution of eq. (3.5) with q2 = 0 and boundary conditions

∂zÃ
a
⊥(0, z)|z=zIR

= 0, Ãa
⊥(0, z)|z=0 = 1.

The IR cutoff zIR is introduced to generate a mass gap. The fifth dimension is taken

as an interval from 0 to zIR.

The model now has six free parameters: g2
5 , zIR, m, c, ms, cs. Among them g2

5 can

be obtained by comparing the vector-vector two point function obtained from the OPE in

large Nc limit [20] to that obtained by using the holographic recipe [6], which leads to the

value g2
5 = Nc

12π2 . Thus there are actually five free parameters left, we shall use an iterative

method to fit the five free parameters.

Let us begin with fitting the parameters without the back reaction. Namely, as a start-

ing point we choose Ã(z) = 1
z
. Using the following experimental data: mπ = 139.6 MeV,

fπ = 92.4 MeV, mρ = 775.8 MeV, mK1A = 1339 MeV, and a semi-global fit for mK∗, we

can then use an iterative method to fix the free parameters in order to minimize the rms

error on the remaining data. The final fit results are shown in table 1. Having fixed the

free parameters, we can calculate the remaining mesons masses and decay constants. In

table 2 and table 3, we show the mass and decay constants of vector mesons and axial

vector mesons respectively.

– 5 –
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observation value(MeV )(%error)

mπ 139.6*

fπ 92.4*

ma1 1364(10.9)
√

Fa1 440(1.6)

mK1A
1339*

√

FK1A
435(

√

FK1
(1400) ∼ 454†)

mA3 1344
√

FKA3
412

Table 2: Axial vector meson results calculated with a back reacted geometry and the free param-

eters given in table 1. Experimental values are chosen as the midpoint of those in [21]. The decay

constant of the a1 is compared with the lattice result [22]. The values with ∗ indicates that this

value is used to fix the free parameters, all other values are predictions. Numbers in brackets give

the percentage error. The value with † is taken from [23].The axial vector meson A3 corresponds

to the isosinglet meson in the octet.

observation value(MeV )(%error)

mρ 775.8*
√

Fρ 348.8(1.1)

mρ
′ 1781

√

Fρ
′ 658

mK∗ 812*(9)
√

FK∗ 328(11†)

mV3
mρ

√

FV3

√

Fρ

Table 3: Vector meson results calculated with a back reacted geometry and the free parameters

given in table 1. The ρ′ is the first excited state of the ρ meson. Experimental values are chosen

as the midpoint of those in [21]. The values with ∗ indicates that this value is used to fix the free

parameters, all other values are predictions. Numbers in brackets give the percentage error. The

value with † is taken from lattice predictions [24].The vector meson V3 corresponds to the isosinglet

meson in the octet.

Having fitted the free parameters and calculated the remaining meson properties we

can also calculate the Ricci scalar for the back reacted geometry:

R(z) = −12c2z6−6c2
sz

6−8cz4m−4csz
4ms+

5

16

(

8+2c2z6+c2
sz

6+2cz4m+csz
4ms

)2
. (3.9)
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0.99

1.01

RHzL�RAds

Figure 1: The variation of the Ricci scalar as a function of radial distance in our model with with

parameters in table 1.

1 2 3 4
0

2

4

6
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10

12

14

16
M2

n
, GeV2

n

 no back-reaction
 back-reaction
 experimental date

Figure 2: Experimental values for M2
ρ∗

(GeV 2) against theoretical values both with and without

back-reaction. The results without back-reaction are calculated with z−1

IR
= 322.6MeV and those

with back-reaction are calculated using the parameters given in table 1.

We plot the curvature as a function of the radial distance in the AdS space, see figure

1. Figure 1 shows that the back reaction has only a small impact on the scalar curvature

in the interval (0, zIR) with a maximum of around 3% departure from the pure AdS result.

For z > zIR the impact is larger but has no effect on our results.
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We also calculate the mass of ρ resonances which is shown in figure 2. However,

because of the small difference between no-back-reaction case and back-reaction case, the

two lines are almost indistinguishable on this scale. As the stringy effects are neglected

in our present analysis, they are expected to become important in the UV. Thus, the

reliability of the current models will diminish above the scale of chiral symmetry breaking

(around Λχ ∼ 4πfπ ∼ 1.2GeV).

The main conclusion of this calculation is that even with the addition of strange quark

dynamics the geometry and hence the spectra of masses and decay constants are not heavily

affected. This is a non-trivial statement about the impact of the strange quark on chiral

dynamics.
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